
Journal of Mathematical Biology (2019) 78:2317–2339
https://doi.org/10.1007/s00285-019-01345-4 Mathematical Biology

A general theory for target reproduction numbers with
applications to ecology and epidemiology

Mark A. Lewis1 · Zhisheng Shuai2 · P. van den Driessche3

Received: 2 October 2018 / Revised: 16 February 2019 / Published online: 11 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
A general framework for threshold parameters in population dynamics is developed
using the concept of target reproduction numbers. This framework identifies repro-
duction numbers and other threshold parameters in the literature in terms of their roles
in population control. The framework is applied to the analysis of single and multi-
ple control strategies in ecology and epidemiology, and this provides new biological
insights.

Keywords Basic reproduction number · Net reproductive value · Leslie matrix ·
Lefkovitch matrix · Disease model · Control

1 Introduction

Some of the most central quantities in theoretical biology are threshold parameters
determining population persistence or disease invasibility, thereby providing bio-
logical insights regarding population protection and disease control. Reproduction
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numbers are threshold parameters that have been widely used in population dynam-
ics, especially for applications in ecology and epidemiology. However, due to the
complexity of biological problems and multiplicities of their mathematical represen-
tations, there are often several different choices for threshold parameters, leading
to varied reproduction numbers (Bani-Yaghoub et al. 2012; Cushing and Diekmann
2016). This has stimulated much discussion (Cushing and Diekmann 2016; Heffernan
et al. 2005; Keeling andGrenfell 2000; Li et al. 2011; Roberts 2007; van denDriessche
2017), and has even led to many analog names (e.g., reproductive rates, reproduction
ratios and net reproductive values) coexisting in the literature. The purpose of this
paper is to identify these reproduction numbers based on their roles on population
control, identifying how they serve as threshold parameters for population dynamics.
The tool used is an extended version of target reproduction numbers, which was first
introduced by Shuai et al. (2013) as a generalization of type reproduction numbers
(Heesterbeek and Roberts 2007; Roberts and Heesterbeek 2003). It will be shown
that many reproduction numbers and related threshold parameters are indeed target
reproduction numbers corresponding to specific population control strategies.

In epidemiology, the basic reproduction number (the average number of secondary
infections caused by a typical infectious individual introduced into a completely
susceptible host population; R0 > 0) often serves as a sharp threshold parameter
determining whether or not the infectious disease dies out byR0 < 1 or > 1, respec-
tively. The next-generation matrix method (Diekmann et al. 2013; van den Driessche
and Watmough 2002), in which biological terms are classified as either disease trans-
mission or transfer, leads to a next-generation matrix K . This has become a standard
tool for deriving the basic reproduction number, which is defined as the spectral radius
of the next-generation matrix (i.e.,R0 = ρ(K )), for many infectious disease models.
The basic reproduction number can be used to determine the herd immunity fraction
1− 1

R0
, which is the fraction of the host population needed to become immune (e.g.,

via vaccine) in order to control the disease (Anderson and May 1991). However, if the
vaccine is only applied to a certain group (group i) of the host population, then the type
reproduction number Ti determines the vaccine coverage needed for group i in order
to control the disease among all groups, and the required fraction of vaccine coverage
in group i is 1 − 1

Ti ; see Heesterbeek and Roberts (2007), Roberts and Heesterbeek
(2003). Recently, a generalization of type reproduction numbers namely target repro-
duction numbers TC has been introduced for measuring strategies that control only
certain infection and/or transition terms during the disease transmission process (Shuai
et al. 2013). Specifically, the next generation matrix is decomposed into two parts: tar-
get matrixC of terms subject to change and residual matrix K −C of terms not subject
to change. Then the controlled reproduction matrix 1

TC C+(K −C) = K −(1− 1
TC )C

has the spectral radius 1 at the threshold value. That is, the required change for terms
in C is measured by the fraction 1 − 1

TC , as established later in Theorem 1.
In ecology, the population growth rate (λ > 0) and the net reproductive value (the

lifetime reproductive output of an individual; R0 > 0) are often derived in matrix
population models to determine whether the population persists or goes to extinction
(Caswell 2001). Let P denote a nonnegative irreducible population projection matrix
in the model (e.g., a Lefkovitch matrix or a Leslie matrix), where P = T + F can be
decomposed into two parts according to their ecological meaning: transition matrix
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T and fertility matrix F . Then the population growth rate determines the effort to be
used to scale both transition and fertility matrices in order to reach the threshold value
of one (crossing from extinction to persistence or from persistence to extinction).
Specifically, the controlled population growth rate corresponding to the controlled
population projection matrix 1

λ
T + 1

λ
F is one. In contrast, the net reproductive value

R0 determines the effort needed to scale only fertility and the resulting projection
matrix T + 1

R0
F has growth rate one (Cushing and Zhou 1994; Li and Schneider

2002). It will be shown later (Lemma 1) that the net reproductive value R0 is a target
reproduction number corresponding to fertility control, while the population growth
rate λ is a target reproduction number corresponding to both fertility and transition
control.

The connection between these threshold parameters in ecology and epidemiology
has been well-recognized from both aspects, and these parameters have also been
widely used in population and disease control. Nevertheless, a general mathemat-
ical framework is still missing to unify these parameters. The consequence is that
researchers often need to define, derive, and study these threshold parameters anew
for different classes of problems in ecology and/or epidemiology. In this paper, we
provide such a general framework on threshold parameters using target reproduction
numbers. First, we extend the definition of the target reproduction number to a general
setting so that it unifies the above threshold parameters. Although the definition of
the target reproduction number is purely algebraic, a graph interpretation is presented
to provide biological meaning. We develop both algebraic and graphic approaches to
compute target reproduction numbers, and demonstrate their use for one or multiple
control strategies. Applications are illustrated using both ecological and epidemiolog-
ical models taken from the literature.

2 Target reproduction number

2.1 A general algebraic theory

Let A = [ai j ] = B + C be a nonnegative irreducible n × n matrix, where the
nonnegative targetmatrix C = [ci j ] consists of all targeted entries, and the nonnegative
residual matrix B = [bi j ] consists of all entries not targeted. Note that each ai j may
be divided into two parts, one part bi j unchanged, and one part ci j subject to change,
either a decrease or increase; that is, ai j = bi j + ci j , 1 ≤ i, j ≤ n. For controllability,
matrix B is required to have ρ(B) < 1, where ρ denotes the spectral radius.

Definition 1 Let A, B,C be nonnegative n × n matrices such that A = B + C is
irreducible, C �= 0, and ρ(B) < 1. Then the target reproduction number TC > 0 is
defined as

TC = ρ(C(I − B)−1), (2.1)

where I is the n × n identity matrix.

The target reproduction number TC defined above extends the one in Shuai et al.
(2013), in which each entry of A is either targeted or not targeted (i.e., each entry is not
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divided into two parts). If S is the set of (whole) entries of A that are targeted, then the
targetmatrixC and residualmatrix B are chosen as follows: if (i, j) ∈ S, then ci j = ai j
and bi j = 0; whereas if (i, j) /∈ S, then ci j = 0 and bi j = ai j . In this situation, the
target reproduction number TC in (2.1) becomes the target reproduction number in
Shuai et al. (2013). Furthermore, when the target matrix C consists of only one or
several rows (or columns) of entries of A, the target reproduction number becomes
the type reproduction number, previously defined by Heesterbeek and Roberts (2007),
Roberts and Heesterbeek (2003).

The target reproduction number TC also works for situations where parts of entires

of A are targeted. For example, let A =
[ b11 + c11 b12

b21 0

]
with target matrix C =

[ c11 0
0 0

]
and residual matrix B =

[b11 b12
b21 0

]
. Then, by Definition 1, the target

reproduction number TC = ρ(C(I − B)−1) = c11
1−b11−b12b21

, provided that 1 − b11 −
b12b21 > 0 equivalently ρ(B) < 1.

Let

AC (τ ) = B + 1

τ
C (2.2)

denote the controlled matrix corresponding to the target matrix C with certain pop-
ulation control effort τ > 0, thus every entry ci j of C becomes ci j/τ . Since A is
irreducible, the monotone property of the spectral radius of AC (τ ) holds (Berman and
Plemmons 1979, p. 27), and thus ρ(AC (τ )) is monotone decreasing as τ increases.
The following result, which extends an earlier result by Shuai et al. (2013, Theorem
2.2), describes the effort that is needed such that the controlled matrix has spectral
radius 1.

Theorem 1 Let A, B,C be nonnegative n × n matrices such that A = B + C is
irreducible, C �= 0, and ρ(B) < 1. Then ρ(AC (τ )) = 1 if and only if τ = TC .

Proof It follows from ρ(B) < 1 that C(I − B)−1 is a nonnegative matrix. Let xT ≥ 0
be a nonnegative left eigenvector ofC(I −B)−1 associated with the Perron eigenvalue
TC = ρ(C(I − B)−1), i.e., xTC(I − B)−1 = TCxT . Hence xTC = TC xT (I − B) =
TCxT − TC xT B, which implies that xT (B + 1

TC C) = xT . This is, the nonnegative

irreduciblematrix B+ 1
TC C has a nonnegative left-eigenvector xT corresponding to the

eigenvalue 1. By Perron-Frobenius Theory (see, e.g., Berman and Plemmons (1979,
Theorem1.4) or Li andSchneider (2002, Theorem2.1)), the spectral radius of B+ 1

TC C
is the unique eigenvalue with a nonnegative eigenvector, and thus ρ(AC (TC )) =
ρ(B+ 1

TC C) = 1. By the monotone property of the spectral radius of AC (τ ) (Berman
and Plemmons 1979, p. 27), ρ(AC (τ )) = 1 if and only if τ = TC . ��

The following result shows that TC and ρ(A) always stay on the same side of the
value 1; see Shuai et al. (2013, Theorem 2.1) for an earlier result on the target repro-
duction number, and also earlier results on the net reproductive rate by Cushing and
Zhou (1994), Li and Schneider (2002). As ρ(A) often provides a sharp threshold for
population dynamics, the various target reproduction numbers TC thus also serve as
sharp threshold parameters and some of them may have explicit and simpler expres-
sions than ρ(A). Using the notation of Berman and Plemmons (1979) for matrices
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X = [xi j ] and Y = [yi j ], the inequality X < Y means xi j ≤ yi j for all i, j and
X �= Y .

Theorem 2 Let A, B,C be nonnegative n × n matrices such that A = B + C is
irreducible, C �= 0, and ρ(B) < 1. Then the following statement holds:

(1) ρ(A) > 1 ⇐⇒ TC > 1;
(2) ρ(A) = 1 ⇐⇒ TC = 1;
(3) ρ(A) < 1 ⇐⇒ TC < 1.

Proof Since A is irreducible, AC (TC ) = B + 1
TC C is also irreducible. If TC > 1,

then AC (TC ) < A = B + C and thus ρ(AC (TC )) < ρ(A) (see, e.g., Berman and
Plemmons (1979, p. 27)). By Theorem 1, ρ(AC (TC )) = 1. Therefore, ρ(A) > 1.
Similarly, if TC < 1, then AC (TC ) > A and 1 = ρ(AC (TC )) > ρ(A). ��

The relation between two target reproduction numbers of the same matrix A is
described in the following result, which extends an earlier result by Shuai et al. (2013,
Theorem 4.3). Biologically, less effort is required when targeting more entries.

Theorem 3 Let A, B,C, B ′,C ′ be nonnegative n×n matrices such that A = B+C =
B ′ +C ′ is irreducible, C �= 0, C ′ �= 0, ρ(B) < 1 and ρ(B ′) < 1. If C > C ′, then one
of the following statements holds:

(1) 1 < TC < TC ′ ;
(2) TC = TC ′ = 1;
(3) TC ′ < TC < 1.

Proof If TC > 1, then, by Theorem 2, ρ(A) > 1 and TC ′ > 1. In the following, we
prove TC ′ > TC . Assume, on the contrary, that TC ≥ TC ′ . Then

AC (TC ) = B + 1

TC
C

= B ′ + 1

TC ′
C ′ + B − B ′ + 1

TC
C − 1

TC ′
C ′

≤ AC ′(TC ′) + B − B ′ + 1

TC ′
(C − C ′)

< AC ′(TC ′) + B − B ′ + C − C ′

= AC ′(TC ′).

Since both AC (TC ) and AC ′(TC ′) are irreducible, ρ(AC (TC )) < ρ(AC ′(TC ′)). How-
ever, by Theorem 1, ρ(AC (TC )) = ρ(AC ′(TC ′)) = 1, which is a contradiction.
Therefore, 1 < TC < TC ′ . The case with TC < 1 can be proved by reversing all
inequalities above. ��

2.2 Graph theoretic interpretation

The previous section uses matrix-theoretic results for target reproduction numbers.
Alternatively, graph-theoretic results can be obtained to provide a powerful tool for
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computing target reproduction numbers explicitly in terms of cycle-unions of the
related digraph. LetD = D(A) = D(B,C) be the weighted multi-digraph associated
with the residual matrix B and target matrix C ; that is, D consists of vertices labelled
by 1, 2, . . . , n, and two arcs j i from vertex j to vertex i (of weights bi j and ci j ) if
and only if bi j > 0 and ci j > 0, one arc j i (of weight given by the nonzero value)
if and only if one of bi j and ci j is nonzero, and no arc if both of them are zero. An
arc corresponding to an entry in C is called a target arc. A cycle-union U of D is a
subdigraph such that each component of U is a cycle of length ≥ 1; that is, a cycle-
union is a union of vertex-disjoint cycles of D. Let c(U) denote the number of cycles
in such a subdigraph. The weight w(U) of a cycle-union U is the product of weights
of arcs in U . The empty digraph (consisting of no vertex and no arc) is regarded as a
trivial cycle-union with weight 1. SeeMoon et al. (2014) orWest (1996) for additional
and detailed graph-theoretic definitions.

The following result provides an alternative way to compute the target reproduction
number TC .

Theorem 4 Let A, B,C be nonnegative n × n matrices such that A = B + C is
irreducible, C �= 0, and ρ(B) < 1. Then τ = TC satisfies the following characteristic
equation

αrτ
−r + αr−1τ

−(r−1) + · · · + α1τ
−1 + α0 = 0. (2.3)

Here r is the rank of the target matrix C and for 1 ≤ i ≤ r ,

αi =
∑

U i

(−1)c(U
i )w(U i ), (2.4)

where the sum is over all cycle-unions U i of D that contain i target arcs of C.

Proof By Theorem 1, τ is equal to TC when 1 is an eigenvalue of the controlled matrix
AC (τ ) = B + 1

τ
C . That is, det(I − B − 1

τ
C) = 0. Applying a determinant expansion

formula in Moon et al. (2014, Proposition 2.2) yields

∑
U

(−1)c(U)w(U) = 0, (2.5)

where the sum is over all cycle-unions U of the weighted multi-digraphDC associated
with matrices B and 1

τ
C . Note thatDC has the same vertex and arcs sets as those ofD

but different weights; specifically, the weight of each target arc in DC equals 1
τ
of the

weight of the target arc in D. Thus the weight of each cycle-union U of DC in (2.5)
contains the factor τ−1 the same number of times as the number of target arcs in U .
Since U is the union of vertex-disjoint cycles of DC , U contains at most r target arcs,
where r is the rank of the target matrix C . Rewriting (2.5) according to the power of
τ−1 gives (2.3) with the coefficient αi of the term τ−i equal to the sum of weights of
all cycle-unions that contain i target arcs. ��

Graph reduction rules by de-Camino-Beck and Lewis (2007, 2008) have previously
been used to derive the characteristic equation (2.3). Our new result Theorem 4 shows
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that the coefficients in the characteristic equation can be interpreted as cycle-unions
of the graph/network. Thus the characteristic equation can be derived by computing
all cycle-unions in the network. For a complex network, the graph reduction rules
(de-Camino-Beck and Lewis 2007, 2008) can be applied to reduce the network before
applying Theorem 4.

If the rank of the targetmatrixC is 1, thenTheorem4 gives an explicit expression for
the target reproduction number in terms of cycle-unions as derived in the following
result. Earlier results of this type have previously been established by Rueffler and
Metz (2013), Rueffler et al. (2013) for the net reproductive value R0, which is a target
reproduction number corresponding to fertility control as shown later in Lemma 1.

Theorem 5 Let A, B,C be nonnegative n × n matrices such that A = B + C is
irreducible, C �= 0, and ρ(B) < 1. If the rank of the target matrix C is 1, then

TC =
∑

U
(−1)1+c(U)w(U)

∑
V
(−1)c(V)w(V)

, (2.6)

where the sums are over all cycle-unions U and cycle-unions V of D(B,C) that do
and do not contain a target arc in C, respectively.

Proof Since the rank of C is 1, r = 1 and the characteristic equation (2.3) with (2.4)
gives

α1T −1
C + α0 = 0 (2.7)

with

α0 =
∑
V

(−1)c(V)w(V) and α1 =
∑
U

(−1)c(U)w(U),

where cycle-unions U and V are given as above. Solving TC from (2.7) gives (2.6). ��

If ci j = ai j for some i and 1 ≤ j ≤ n and ci j = 0 otherwise, then TC becomes the
type reproduction number Ti targeting all entries in row (or column) i of A (Heester-
beek and Roberts 2007; Roberts and Heesterbeek 2003). If ci j = ai j for some i, j
and ci j = 0 otherwise, then TC becomes the target reproduction number Ti j targeting
only one entry (i, j) of A (Moon et al. 2014; Shuai et al. 2013). The following results
follow directly from Theorem 5, and have previously been established by Moon et al.
(2014, Theorems 4.1 and 5.3) by using generating functions for walks in a digraph.

Corollary 1 Let A be a nonnegative n × n irreducible matrix, and Ti and Ti j be well
defined for some i, j . Then

Ti =
∑

Ui
(−1)1+c(Ui )w(Ui )

∑
Vi

(−1)c(Vi )w(Vi )
, (2.8)
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where the sums are over all cycle-unions Ui and cycle-unions Vi of D(A) that do and
do not contain a vertex in row (or column) i , respectively; and

Ti j =
∑

Ui j
(−1)1+c(Ui j )w(Ui j )

∑
Vi j

(−1)c(Vi j )w(Vi j )
, (2.9)

where the sums are over all cycle-unions Ui j and cycle-unions Vi j of D(A) that do
and do not contain arc ji of weight ai j , respectively.

An illustration of these results is given for a perennial weed, scentless chamomile,
in Sect. 3.4.

A characteristic equation such as (2.3) can be extended to the case where multiple
control strategies are applied for matrix A. For example, let S be the target set with
effort τ and U be the target set with effort σ . Let Ã = [ãi j ] be the controlled matrix
after these two control efforts, then

ãi j =

⎧⎪⎪⎨
⎪⎪⎩

ai j if (i, j) /∈ S ∪ U,
1
τ
ai j if (i, j) ∈ S, (i, j) /∈ U,

1
σ
ai j if (i, j) ∈ U, (i, j) /∈ S,
1

τσ
ai j if (i, j) ∈ S ∩ U.

Then using an argument similar to that in the proof of Theorem 4, the characteristic
equation such that ρ( Ã) = 1 is

r∑
i=0

s∑
j=0

αi jτ
−iσ− j = 0, (2.10)

where r , s are the ranks of the target matrices corresponding to S and U, and

αi j =
∑

U i j

(−1)c(U
i j )w(U i j ).

Here the sum is over all cycle-unions U i j that contain i target arcs in S and j target
arcs in U. The characteristic equation (2.10) can be used to derive minimum cost
population control strategies; see Sects. 3.4 and 4.2 for applications in ecology and
epidemiology, respectively.

3 Applications to ecology

3.1 Net reproductive value as a target reproduction number

A discrete-timematrix model (Caswell 2001) for an age or stage structured population
is defined as

xt+1 = Pxt , (3.1)
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where xt is a vector of ages/stages at time t and P is a nonnegative irreducible matrix,
customarily called a population projection matrix, which describes transitions from
one age/stage to another one (Caswell 2001). The spectral radius λ = ρ(P) is called
the (geometric) population growth rate, which determines whether the population
grows or goes to extinction, depending on whether λ > 1 or λ < 1. (Note that λ is not
strictly a rate as it is dimensionless.) Theprojectionmatrix P canbedecomposed, based
on biological interpretations, as P = T + F , where T ≥ 0 contains the survivorship
transitions and F ≥ 0 contains the fecundities.Hence, T and F are called the transition
matrix and the fecundity matrix (or fertility matrix), respectively. The net reproductive
value R0 is defined as the spectral radius of the next generation matrix F(I − T )−1,
that is,

R0 = ρ(F(I − T )−1); (3.2)

see Allen and van den Driessche (2008), Cushing and Zhou (1994), Li and Schneider
(2002). The following result shows that R0 is the target reproduction number that
corresponds to the population control strategy targeting all fecundities in the projection
matrix.

Lemma 1 Suppose that ρ(T ) < 1. Then the net reproductive value R0 is the target
reproduction number TC as in (2.1) for A = P corresponding to the target matrix
C = F.

Proof Let A = P = B + C , B = T , and C = F in Definition 1. The the target
reproduction number TC as in (2.1) becomes TC = ρ(F(I − T )−1) = R0 by (3.2). ��

An illustration of this result is given for a Lefkovitch model for salmonid conser-
vation in Sect. 3.3.1.

By identifying λ = ρ(P) = TP and R0 = TF with P ≥ F , the next result follows
directly from Theorem 3. This result previously appeared in Li and Schneider (2002,
Theorem 3.1) and Cushing and Zhou (1994, Theorem 3 and Corollary 7).

Lemma 2 Suppose that ρ(T ) < 1 and T �= 0. Then one of the following holds:

(1) 1 < λ < R0;
(2) λ = R0 = 1;
(3) R0 < λ < 1.

We remark that if T = 0, then the growth rate and the net reproductive value are equal,
i.e., λ = R0.

In the remaining part of this ecological section, we demonstrate the applications
of target reproduction numbers with common types of projection matricies P in the
literature.
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3.2 Application to n-stage Lefkovitchmatrix model

Consider the following Lefkovitch matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 + b1 b2 b3 · · · bn−2 bn−1 bn
t1 s2

t2 s3
. . .

. . .

sn−2
tn−2 sn−1

tn−1 sn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.3)

where si ≥ 0 describes the probability of staying, ti > 0 describes the probability of
transition, and bi ≥ 0 with bn > 0 describes the fertility (Caswell 2001). According
to Lemma 1, the net reproductive value R0 is the target reproduction number TC with
the fertility matrix being the target matrix C , that is,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 b2 · · · bn−1 bn

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Notice that the targetmatrixC contains only part of the (1, 1) entry of P , demonstrating
the extension of target reproduction numbers as described in Sect. 2. Since C has rank
1, Theorem 5 can be used to derive the following explicit expression

R0 = b1(1 − s2) · · · (1 − sn) + t1b2(1 − s3) · · · (1 − sn) + · · · + t1 · · · tn−1bn
(1 − s1) · · · (1 − sn)

,

i.e.,

R0 = b1
1 − s1

+ t1b2
(1 − s1)(1 − s2)

+ · · · + t1 · · · tn−1bn
(1 − s1) · · · (1 − sn)

. (3.4)

To assess the impact of control we consider the case in which the following steps
happen in each time interval in the order stated

– production of bi offsprings per survivor;
– survival with probability pi ;
– proportion qi stays in the same class while proportion 1 − qi moves to the next
class.

In terms of these quantities, si = piqi and ti = pi (1 − qi ).
When qi = 0 for all i , si = 0, ti = pi and P in (3.3) becomes a Leslie matrix

(Caswell 2001). As a consequence, the net reproductive value (3.4) becomes R0 =∑n

i=1
bi

∏i−1

j=1
p j , with the convention that

∏0
j=1 p j = 1. This agrees with previous

results on Leslie matrices; see, for example, Caswell (2001).

123



A general theory for target reproduction numbers with… 2327

3.3 Application to 4-stage Lefkovitchmatrix model, with a case study on
protecting salmonids

In this section we consider the Lefkovitch matrix in the form of (3.3) with 4 stages
(i.e., n = 4) and discuss various population control strategies. That is,

P =

⎛
⎜⎜⎝
s1 + b1 b2 b3 b4

t1 s2 0 0
0 t2 s3 0
0 0 t3 s4

⎞
⎟⎟⎠ , (3.5)

with si = p1qi and ti = pi (1 − qi ).

3.3.1 The target matrix C has only nonzero entries of bi for 1 ≤ i ≤ 4, i.e.,
control of offspring production. By Lemma 1, the target reproduction number TC is
the same as R0 as given in (3.4) with n = 4. That is, the controlled projection matrix

PC =

⎛
⎜⎜⎝
s1 + b1

R0

b2
R0

b3
R0

b4
R0

t1 s2 0 0
0 t2 s3 0
0 0 t3 s4

⎞
⎟⎟⎠ has spectral radius 1.

3.3.2 The target matrix C has only nonzero entries of s1 and t1, i.e., control of
survival probability p1 in stage 1. The corresponding target reproduction number
takes the form

TC = s1
m1

+ t1b2
m1(1 − s2)

+ t1t2b3
m1(1 − s2)(1 − s3)

+ t1t2t3b4
m1(1 − s2)(1 − s3)(1 − s4)

,

with m1 = 1 − b1.

3.3.3 The target matrix C has only nonzero entry s4, i.e., control of survival proba-
bility at the last stage. The target reproduction number is

TC = T44 = s4z

z − t1t2t3b4

with z = (1−s1−b1)(1−s2)(1−s3)−t1b2(1−s3)−t1t2b3 encoding all cycle-unions
that do not contain the last stage.

3.3.4 An immediate application of the Lefkovitch matrix (3.5) is to the salmonid
model proposed by Huang and Lewis (2015, Appendix C), in which s1 = s2 = 0 and
b1 = b2 = b3 = 0. That is, the projection matrix for protecting salmonids takes the
following form
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P =

⎛
⎜⎜⎝

0 0 0 b4
t1 0 0 0
0 t2 s3 0
0 0 t3 s4

⎞
⎟⎟⎠ . (3.6)

First the net reproductive value R0 is the target reproduction numberT1 (targeting all
entries in the first row or the first column). Since the first row and the first column both
contain only one non-zero entry, it follows fromTheorem5 that R0 = T1 = T21 = T14.
Biologically, in order to protect endangered salmonids (i.e., R0 < 1), either the average
number of fertilized eggs produced per adult, b4, could be increased by b4(1/R0 −1),
i.e., the average number of fertilized eggs produced per adult becomes b4/R0 (actually
this leads to a controlled reproductive value Rc = 1, thus a little bit more increase
is needed), or the proportion of eggs that hatch to fry stage each year, t1, could be
increased to t1/R0.

Since the second row contains only one non-zero entry, T2 = T21 = T32 = R0.
For example, to control the proportion of fry that survive to the juvenile stage each
year, t2 could be increased to t2/R0. Similarly, other target reproduction numbers can
be calculated to measure the change of s3, t3 or s4 needed in order to protect the
endangered population. The increase of s4 could be achieved by reducing the harvest
for adult salmonids, thus T44 = s4(1 − s3)/((1 − s3) − t1t2t3b4) guides the needed
amount of harvest reduction.

3.4 Application to controlling scentless chamomile

Scentless chamomile (Matricaria perforata) is an invasive weed in north America,
found in agricultural farmland and disturbed habitats. It is a perennial with three
stages: seed bank (in the ground, 1), rosettes (2), and flowering plants (3). Biological
transitions can be represented either by weights in a life-cycle graph or by entries in
a projection matrix. In a given year, seeds in the seed bank will remain in the seed
bank with probability a11. They will germinate from the seed bank into a rosette with
probability a21, and germinate into a flower with probability a31. They will die with
probability 1− a11 − a21 − a31. Rosettes will transform into flowers with probability
a32, and die with probability 1 − a32. The flowers contribute to all fecundities as
follows. In a single year, flowers will produce a13 seed bank seeds per flower, will
produce a23 rosettes per flower, and will produce a33 new flowers per flower. Then
the original flower will die. Full details of the life cycle dynamics can be found in
de-Camino-Beck and Lewis (2007).

The resulting projection matrix for the growth of scentless chamomile (de-Camino-
Beck and Lewis 2007, 2008) is

A =
⎡
⎣
a11 0 a13
a21 0 a23
a31 a32 a33

⎤
⎦ . (3.7)

The corresponding weighted digraph D(A) is given in Fig. 1. There are multiple
biological control measures for scentless chamomile. Generally, they can target either
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1 2 3 a33

a31

a13

a23

a32

a21
a11

Fig. 1 Digraph D(A) for scentless chamomile, as given by matrix (3.7). For a full biological explanation
of the weights, see the text

the seed production (e.g., seed weevils) or the plant growth (e.g., gall midges) (Hinz
and McClay 2000). Controls affecting seed production will reduce a13, a23 and a33.
Controls affecting plant growth will reduce a21, a31 and a32. They may also have a
smaller affect on a33, but we do not consider this. For completeness we also consider
the possibility that level of seeds in the seed bank can be controlled by removal of soil
infested with seeds, thereby reducing a11. However, in practice, this is not a typical
method for control.

In what follows we first consider the three different strategies in isolation, and then
consider a mixed strategy.

3.4.1 Control of offspring reproduction We consider the case where the target matrix
C has only nonzero entries ci3 = ai3 for 1 ≤ i ≤ 3, so that the target matrix is the
fecundity matrix (de-Camino-Beck and Lewis 2007, 2008). Since this matrix has rank
1, by Corollary 1,

T3 = a33 + a13a31 + a23a32 + a13a32a21 − a11a33 − a11a23a32
1 − a11

, (3.8)

provided a11 < 1. In the denominator, 1 is the weight of an empty digraph while a11
is the weight of the cycle-union consisting of a loop (i.e., cycle of length 1) at vertex
1. In the numerator of T3, the first four terms are the weights of four cycle-unions
that consist of only one cycle and contain exactly one target entry, while the last two
terms are the weights of two cycle-unions that each consist of two cycles and contain
exactly one target entry (see Fig. 1). The target reproduction number T3 agrees with
the expression of the basic reproductive ratio R0 in de-Camino-Beck and Lewis (2007)
derived by graph reduction rules, agreeing with Lemma 1.

3.4.2 Control of survival probability at the first stage We next consider the case
where the target matrix C has only one nonzero entry c11 = a11, i.e., control of the
survival probability of seeds. By Corollary 1, the target reproduction number is

T11 = a11(1 − a33 − a23a32)

1 − a33 − a13a31 − a23a32 − a13a32a21
, (3.9)

provided that the denominator is positive. Biologically this positivity means that the
growth of scentless chamomile can be controlled by only targeting the survival prob-
ability of seeds. Note that all terms in (3.9) are the weights of cycle-unions in D(A),
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and all terms in (3.8) also appear in (3.9) but are relocated based on whether the term
contains a target entry.

3.4.3 Control of survival probability at the last stage In the last single strategy, the
target matrix C has only nonzero entries c21 = a21, c31 = a31, and c32 = a32, i.e.,
control of the growth terms. From (2.1), the target reproduction numberTC = ρ(C(I−
A + C)−1). Since matrix C has rank 2, it follows that, provided a11 < 1, a33 < 1,

TC = ρ

([
0 qa13a21
a32 qa13a31 + qa23a32(1 − a11)

])
, (3.10)

with q = 1/((1− a11)(1− a33)). Alternatively, an explicit equation involving TC can

be derived as follows. Let Ã =
⎡
⎣

a11 0 a13
a21/σ 0 a23
a31/σ a32/σ a33

⎤
⎦ be the controlled matrix. By

Theorem 1, the target reproduction number TC is the value of σ such that ρ( Ã) = 1.
By Theorem 2 and applying formula (3.8) to matrix Ã, it follows that ρ( Ã) = 1 if and
only if

T3( Ã)

= a33 + a13a31σ−1 + a23a32σ−1 + a13a32a21σ−2 − a11a33 − a11a23a32σ−1

1 − a11
= 1.

Solving this gives a quadratic equation in σ−1, namely,

a13a21a32(σ
−1)2+(a13a31+a23a32−a11a23a32)σ

−1+(−1+a11+a33−a11a33) = 0.
(3.11)

When multiplied by σ 2, this agrees with the characteristic equation of the matrix in
(3.10). As shown in Theorem 4, the terms in (3.11) have graphical interpretations: the
coefficient of the quadratic term corresponds to the weight of the cycle (or cycle-union
in general) that contains two target entries, the coefficient of the linear terms corre-
sponds to the weights of cycle-unions that contain one target entry, and the constant
term corresponds to the weights of cycle-unions that do not contain any target entry
(including the empty digraph of weight 1).

The cycles and cycle-unions used to calculate the target reproduction numbers can
be interpreted biologically in terms of the organism’s life cycle. For example, in (3.11),
the term containing two target entries, a13a21a32, starts with flowers, goes to the seed
bank (a13), then to rosettes (a21), then back to flowers (a32). The terms containing one
target entry and a single cycle are as follows: flowers-seed bank-flowers (a13a31) and
flowers-rosettes-flowers (a23a32). The term containing one target entry and the union
of two cycles is flowers-rosettes-flowers (a23a32) multiplied by seed bank-seed bank
(a11). The terms containing no target entries are as follows: the empty digraph (−1),
seed bank-seed bank (a11), flowers-flowers (a33), and the product of the latter two
representing the union of the two cycles.
3.4.4 Nowwe consider the minimum cost population control strategies for the scent-
less chamomilematrix A in (3.7)with the combination of control strategies in 3.4.1 and
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3.4.3 above, i.e., control of fecundity and growth. In order to determine the minimum

cost control effort, consider the controlled matrix Ã =
⎡
⎣

a11 0 a13/τ
a21/σ 0 a23/τ
a31/σ a32/σ a33/τ

⎤
⎦

with τ > 1 and σ > 1, and set ρ( Ã) = 1, which is equivalent to setting T3( Ã) = 1
by Theorem 2. It follows from (3.8), since a11 < 1, that

τ−1(a33 + a13a31σ−1 + a23a32σ−1 + a13a32a21σ−2 − a11a33 − a11a23a32σ−1)

1 − a11
= 1,

thus
τ = a13a32a21

1 − a11
σ−2 +

(
a23a32 + a13a31

1 − a11

)
σ−1 + a33, (3.12)

namely,

a13a32a21τ
−1σ−2 +

(
a13a31 + a23a32 − a11a23a32

)
τ−1σ−1

+ (a33 − a11a33)τ
−1 − 1 + a11 = 0. (3.13)

Suppose the costs per unit of effort for control strategies with respect to strategies
3.4.1 and 3.4.3 are d1 and d2, respectively. We assume, for illustration, that τ − 1 and
σ −1 measure the efforts needed for the control matrix Ã, and the corresponding total
cost function is defined as D = d1(τ − 1) + d2(σ − 1). Using (3.12), it follows

D(σ ) = d2(σ − 1) + d1
a13a32a21
1 − a11

σ−2 + d1
(
a23a32 + a13a31

1 − a11

)
σ−1 + d1(a33 − 1).

(3.14)
It can be verified that the minimum cost D∗ = D(σ ∗) is achieved when σ = σ ∗ where
σ ∗ is a critical point of D(σ ). In particular, σ ∗ is the unique positive root of

D′(σ ) = d2 − 2d1
a13a32a21
1 − a11

σ−3 − d1
(
a23a32 + a13a31

1 − a11

)
σ−2 = 0,

or equivalently

(σ ∗)3 − d1
d2

(
a23a32 + a13a31

1 − a11

)
σ ∗ − 2

d1a13a32a21
d2(1 − a11)

= 0.

Figure 2 illustrates the costminimizationprocess graphically. It is possible to control
the populations when values of σ and τ fall above the solid curve. The straight line
shows the cost curve for various different costs. The minimum cost, and resulting
values σ = σ ∗ and τ = τ ∗ occur when the cost curve is tangent to the control curve.
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Fig. 2 Demonstration of the calculation of minimum cost control for the scentless chamomile system
studied in Sect. 3.4.4. The solid curve describes the relationship between fecundity control (τ ) and growth
control (σ ) given by Eq. (3.12). Control is achieved for all points (σ, τ ) lying above this curve. The dashed
line shows the total cost function which achieves minimum cost. This is achieved at the value (σ∗, τ∗)
given by the dot. The lower dotted line shows that control cannot be achieved for a lower than minimum
cost, and the higher dotted line shows that when costs are higher a range of fecundity and growth values
are available for successful control. For illustrative purposes, the coefficients for each power of σ in (3.12)
were taken equal to 1 and d2/d1 was taken equal to 1. The dashed curve shows a total cost of D = 1.6 d1
and the upper and lower dotted curves show D = 1.9 d1 and D = 1.3 d1, respectively. These values yield
(σ∗, τ∗) = (1.52, 2.08)

4 Applications to epidemiology

4.1 Basic reproduction numbers as target reproduction numbers

Consider an ordinary differential equation compartmental model for infectious dis-
eases. Let J be the Jacobian matrix, representing the linearization of the dynamics
of the populations in the disease compartments at the disease-free state. Following
the next generation matrix method (Diekmann et al. 2010, 2013; van den Driessche
and Watmough 2002), consider a decomposition of J as J = F − V , where F and
V represent the transmission matrix and transfer matrix, respectively. In particular,
the inverse of V exists, and both F and V−1 are nonnegative. Then the basic repro-
duction number R0 is defined as the spectral radius of the next generation matrix
FV−1, that is, R0 = ρ(FV−1). It sometimes happens that several terms in the dis-
ease models might have arguable biological interpretations or customarily be treated
in a certain way for mathematical simplicity, resulting in a different decomposition of
J = F̃ − Ṽ , another next generation matrix F̃ Ṽ−1, and another basic reproduction
number R̃0 = ρ(F̃ Ṽ−1). Since both next generation matrices FV−1 and F̃ Ṽ−1 cor-
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respond to the same stability problem of matrix J , it follows that R0 and R̃0 always
stay on the same side of the threshold value 1; see, for example, Knipl (2016, Proposi-
tion 2.1). Set A = FV−1, and thusR0 = ρ(A). Then the following result shows that
R̃0 is actually a certain target reproduction number for matrix A, which extends and
provides biological insights to earlier results by Bani-Yaghoub et al. (2012, Section
3.2) and Saad-Roy et al. (2015, Theorem 1).

Theorem 6 Suppose that J = F − V = F̃ − Ṽ , the inverse of V and Ṽ both exist,
and F, F̃, V−1, Ṽ−1 are nonnegative. If F − F̃ > 0 and ρ((F − F̃)V−1) < 1, then
R̃0 = ρ(F̃ Ṽ−1) is the target reproduction number TC as in (2.1) for A = FV−1

corresponding to the target matrix C = F̃V−1.

Proof Since A = FV−1 and C = F̃V−1, it follows that B = A−C = (F − F̃)V−1.
Notice that F− F̃ = V−Ṽ , and thus B = (V−Ṽ )V−1 = I−Ṽ V−1. Hence, the target
reproduction number (2.1) becomes TC = ρ(C(I − B)−1) = ρ(F̃V−1V Ṽ−1) =
ρ(F̃ Ṽ−1) = R̃0. ��

Biologically, the basic reproduction number R0 = ρ(FV−1) can be regarded as
the target reproduction number for A = FV−1 corresponding to the target matrix
C = A = FV−1, i.e., targeting all entries in A.

Theorem 7 Let F, F̃, V , Ṽ satisfy assumptions in Theorem 6, and F > F̃ . SetR0 =
ρ(FV−1) and R̃0 = ρ(F̃ Ṽ−1). Then one of the following holds:

(1) 1 < R0 < R̃0;
(2) R0 = R̃0 = 1;
(3) R̃0 < R0 < 1.

Proof By Theorem 6, R̃0 = TC , where TC is defined as in (2.1) with A = FV−1 and
C = F̃V−1. On the other hand, R0 = TC ′ with C ′ = A. Since F > F̃ , it follows
that C ′ > C , and thus the relations between R0 = TC ′ and R̃0 = TC follow from
Theorem 3. ��

4.2 Application to heterogeneous infectious disease control

Heterogeneity exists and plays an important role in infectious disease transmission.
Mathematical models have been employed to understand the disease dynamics and
to evaluate the disease intervention and control strategies. For example, the multi-
group type of models (which also are called Lagrangian models (Cosner et al. 2009))
have been used to investigate the effect of the core group in sexually transmitted
infections (Lajmanovich andYorke 1976), and tomodel the spatial spread of infectious
diseases (Lloyd and May 1996). It turns out that the basic reproduction number R0,
defined as the spectral radius of the next generation matrix (Diekmann et al. 2013; van
den Driessche and Watmough 2002), generally determines whether the disease dies
out from all groups or persists at an endemic level in each group (Guo et al. 2006;
Lajmanovich and Yorke 1976; Lloyd and May 1996). Hence, in order to eradicate the
disease from all groups, various disease intervention and control strategies need to
reduce the value of the (controlled) reproduction number below 1; see, for example,
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Chow et al. (2011), Heesterbeek and Roberts (2007), Roberts and Heesterbeek (2003).
In this section, we evaluate group-targeted vaccination strategies (Chow et al. 2011)
by incorporating the vaccine cost into target reproduction numbers.

An n-group infectious disease model applicable for viral diseases such as measles
or influenza leads to an n× n next generation matrix A = [βi j Ni

d+γ
], where d is the birth

and death rate, γ is the recovery rate (thus 1/γ is the mean infectious period), βi j
is the mass action transmission coefficient from infectious individuals in group j to
susceptible individuals in group i , and Ni is the constant total population in group i .
To simplify our exposition, we consider a 2-group model and take

A =
[a11 a12
a21 a22

]
, (4.1)

where aii represents the within-group transmission in group i (i = 1, 2), while ai j
represents the between-group transmission in group i due to infectious individuals in
group j ( j �= i). Suppose that a vaccine can be employed to target host individuals
in group i with a cost per unit effort di ; that is, it costs di pi to effectively vaccinate a
fraction pi (0 < pi ≤ 1) of the host individuals in group i . In reality, di might depend
on the population size of group i , the type of vaccine applied, and the cost covering the
utility and human resource. The within-group and between-group transmission after
the vaccine effort applied in group i becomeaii/τi andai j/τi with τi = 1/(1−pi ) ≥ 1.
This removal of a vaccinated proportion, pi , from a population of size Ni reduces the
population size to (1 − pi )Ni . With target sets Sτi = {(i, j)| j = 1, 2} for i = 1, 2,
with effort τi , the controlled next generation matrix is

Ã =
[a11/τ1 a12/τ1
a21/τ2 a22/τ2

]
. (4.2)

Then the type reproduction numbers T1, T2 can be calculated using Corollary 1 and
assuming a11 < 1, a22 < 1:

T1 = a11 + a12a21 − a11a22
1 − a22

= a11 + a12a21
1 − a22

, (4.3)

and
T2 = a22 + a12a21

1 − a11
. (4.4)

Applying (4.3) for matrix Ã in (4.2) gives

T̃1 = a11τ
−1
1 + a12a21τ

−1
1 τ−1

2

1 − a22τ
−1
2

. (4.5)

From Theorem 2, ρ( Ã) = 1 iff T̃1 = 1, and since τi = 1/(1 − pi ) it follows that

1 = a11(1 − p1) + a12a21(1 − p1)(1 − p2)

1 − a22(1 − p2)
. (4.6)
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Let D = D(p1, p2) denote the cost function with vaccination among two groups that
effectively vaccinates fractions pi of the group populations. Then, by assumption,

D = d1 p1 + d2 p2, 0 ≤ p1, p2 ≤ 1. (4.7)

The minimum cost group-targeted vaccination strategies can be investigated by mini-
mizing the cost function D in (4.7) subject to the constraint (4.6).

Theorem 8 Suppose that R0 = ρ(A) > 1, a11 < 1, and a22 < 1. Let T1, T2 be
as defined in (4.3)–(4.4). Then the cost function D(p1, p2) in (4.7) subject to (4.6)
achieves the minimum D∗ = D(p∗

1, p
∗
2) where p∗

1 and p∗
2 satisfy the following con-

ditions.

(1) If a11a22 < a12a21, then either p∗
1 = 0 or p∗

2 = 0.

(1a) If, in addition,
d2
d1

> r̄ := 1 − 1
T1

1 − 1
T2

, then p∗
1 = 1 − 1

T1
and p∗

2 = 0.

(1b) If, in addition,
d2
d1

< r̄ , then p∗
1 = 0 and p∗

2 = 1 − 1

T2
.

(2) If a11a22 > a12a21, then p∗
1 and p∗

2 depend on the following constants

p̄1 = 1 −
a22 −

√
d2
d1
a12a21

a11a22 − a12a21
and p̄2 = 1 −

a11 −
√

d1
d2
a12a21

a11a22 − a12a21
. (4.8)

(2a) If

r∗ := (a22 + a12a21 − a11a22)2

a12a21
<

d2
d1

< r∗ := a12a21
(a11 + a12a21 − a11a22)2

,

then 0 < p∗
1 = p̄1 < 1 − 1

T1
and 0 < p∗

2 = p̄2 < 1 − 1

T2
.

(2b) If
d2
d1

> r∗, then p∗
1 = 1 − 1

T1
and p∗

2 = 0.

(2c) If
d2
d1

< r∗ , then p∗
1 = 0 and p∗

2 = 1 − 1

T2
.

Proof It follows from (4.6) that

p1 = p1(p2) = 1 − 1 − a22(1 − p2)

a11 + (1 − p2)(a12a21 − a11a22)
.

Thus

p′
1 = −a12a21

(a11 + (1 − p2)(a12a21 − a11a22))2
< 0,

p′′
1 = 2a12a21(a11a22 − a12a21)

(a11 + (1 − p2)(a12a21 − a11a22))3
,

and the sign of p′′
1 agrees with the sign of a11a22 − a12a21.
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When a11a22 < a12a21, p1 = p1(p2) is a continuous curve in the p1-p2 plane
connecting (1 − 1

T1 , 0) and (0, 1 − 1
T2 ), which is decreasing and concave down as

p′′
1 < 0. The cost function D = d1 p1 + d2 p2 corresponds to a series of straight lines

with different values D. The minimum value of D is obtained when one of the straight
lines cross one of the boundary points (0, 1 − 1

T2 ) or (1 − 1
T1 , 0).

When a11a22 > a12a21, the curve p1 = p1(p2) is decreasing and concave up.
The minimum value of D might be obtained when the straight line is tangent to the
curve p1 = p1(p2) at the interception point ( p̄1, p̄2), where p̄1 and p̄2 are given as
in (4.8). It can be verified that if the assumption in (2a) is satisfied, both p̄i are in
the biologically reasonable range between 0 and 1 − 1

Ti . Otherwise, the minimum

value of D is obtained when the straight line crosses the boundary point (1 − 1
T1 , 0)

or (0, 1 − 1
T2 ); this is the case (2b) or (2c). ��

Note that r∗ = r∗ = r̄ if and only if a11a22 = a12a21 (i.e., A and Ã are singular
matrices) provided R0 > 1. Biologically, if between-group transmission is larger
than within-group transmission in a two-group disease model, then the one-group
vaccination strategy is better than the two-group vaccination strategy. On the other
hand, if within-group transmission is larger than between-group transmission (e.g.,
for infectious diseases that spread in several geographic regions), then the two-group
vaccination strategy might be more cost-effective (especially when the cost per unit
effort di in each group is relatively comparable). For the latter situation, when the cost
per unit ratio d2/d1 increases, (4.8) shows that it is better to increase vaccine coverage
in group 1, as p̄1 increases .We now illustrate these statements with specific examples.

Example 1 Let A = [ai j ] =
[ 0.5 0.6
0.6 0.5

]
, then T1 = T2 = a11 + a12a21

1−a22
= 1.22. In

this example, both within-group transmissions and between-group transmissions are
equal, with the latter being larger. By Theorem 2, R0 = ρ(A) > 1. Note that a11 <

1, a22 < 1 and a11a22 = 0.25 < a12a21 = 0.36; all assumptions in Theorem 8(1)
are satisfied. By Theorem 8, a better vaccination strategy is to target the group with

lower cost per unit effort as r̄ = 1− 1
T1

1− 1
T2

= 1, and more than p1 = 1− 1/T1 of the host
population in this group needs to be effectively vaccinated in order to eradicate the
disease from both groups.

Example 2 Let A = [ai j ] =
[ 0.6 0.5
0.5 0.6

]
, then T1 = T2 ≈ 1.11 and R0 = ρ(A) > 1.

In this case, within-group transmissions are larger. Since a11a22 = 0.36 > a12a21 =
0.25, by Theorem 8(2), r∗ = 0.9604, r∗ = 1.0412 and the minimum cost vaccination
strategy is determined by the cost per unit ratio in two groups. Specifically, if r∗ <

d2/d1 < r∗, then it is better to vaccinate both groups with more than p̄i of the host
population in each group i to require immunity from vaccine. If d2/d1 > r∗, then it
is better to vaccinate group 1 such that more than 1− 1/T1 of the group population is
effectively vaccinated. If d2/d1 < r∗, then the better vaccination strategy is to target
group 2 such that more than 1− 1/T2 of the population in group 2 requires immunity
from vaccine.
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Example 3 The results developed above can also be applied to diseases with no
between-group transmission such as a vector-borne disease (e.g., malaria) or a het-

erosexually transmitted diseases (e.g., gonorrhea). Let A = [ai j ] =
[ 0 a12
a21 0

]
be

the next generation matrix for simple disease models in which transmission happens
due to host-vector contact for vector-borne diseases or due to heterosexual contact for
sexually transmitted infections (STIs). By Theorem 8 (1), it is better to target either
the vector population or the host population for vector-borne diseases and target either
the female or male group for STIs, depending on the cost of corresponding one-group
target strategies. For example, in order to eradicate malaria, the mosquito population
or the susceptible human population needs to be reduced below a certain threshold.
According to Theorem 8, it is better to apply all available resources to target only
one population, either mosquito control or human protection (e.g., bed nets, vaccina-
tion), depending on the relative costs involved. However, our underlying model is very
simple, and since control or vaccination costs are expected to be variable (e.g., rising
when nearing a high vaccination rate), it may be more effective to target both hosts.
This could be the subject of further research using more realistic and complicated
infectious disease models.

5 Concluding remarks

Wehave developed a generalmathematical framework, based on newly extended target
reproduction numbers, which unifies threshold parameters in theoretical biology. The
extended target reproduction numbers include the classical net reproductive value
used in ecology, and the basic and type reproduction numbers used in epidemiology.
These parameters delineate conditions under which a population or disease persists
or goes extinct. Specifically, knowledge of these target reproduction numbers aids
in measuring the change of certain parameter values in order to protect endangered
species (e.g., salmonids, see Sect. 3.3), and to determine vaccination strategies for
disease control (e.g., a two group infectious disease model, see Examples 1 and 2 in
Sect. 4.2).

Our results on target reproduction numbers are developed algebraically, but graph
theoretic interpretations using cycle-unions in the digraph underlying the dynamics
are also given. This approach leads to a characteristic equation that is useful for
deriving minimum cost population mixed control strategies in terms of the cost of
each individual control strategy (see Sect. 3.4.4 and Fig. 2 for control of scentless
chamomile, and Sect. 4.2 for disease control by vaccination). The general framework
developed can be applied to Lesliematrices, with extensions to Lefkovitchmatrices for
stage structured populations, as well as to multigroup disease transmission models.
Using parameter values and cost functions estimated from data, the results can be
applied to give practical suggestions for minimum cost control strategies to control or
preserve populations and to eradicate infectious diseases.
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